Conformational effects on melting point depression of atactic polypropylene and ethylene-propylene copolymers

Nobuyuki Tanaka

Department of Polymer Science, Faculty of Technology, Gunma University, Kiryu, Japan (Received 19 June 1980; revised 1 September 1980)

The composition dependence of T_m is investigated for RIS models of a-PP and random E/P copolymers using a modified Flory's equation. The values of a (=1 in the original equation) are 1.8 \sim 1.9 and 1.3 for a-PP and E/P copolymers respectively. Values for the heat and entropy of transition due to quasi-crystals in the amorphous regions suggest that there is a high possibility of ordering in these regions in a-PP but there is a much looser packing in E/P copolymers.

INTRODUCTION

The melting temperature T_m of atactic polypropylene (a-PP) varies depending on its tacticity. A-PP is normally taken as being totally amorphous whereas in this paper it refers to imperfectly stereoregular material which can, however, still crystallize to some extent. Natta¹, Newman² and Pavan etc.³ investigated the melting point depression of a-PP as a function of tacticity using an original Flory's equation (equation 1 with a=1)⁴. However, it has been pointed out⁵ that the application of an original Flory's equation to the T_m data of copolymers is inadequate, because the heat of fusion h_{μ} of a polymer evaluated from an original Flory's equation is a third to a half of the magnitude of h_u from the diluent method⁵ and the d.s.c. measurement. The results for a-PP by Natta etc. 1-3 should be reconsidered.

In this paper, a modified Flory's equation (1) is proposed and the composition dependence of T_m is investigated for the rotational isomeric state (RIS) models⁶ of a-PP and random ethylene-propylene (E/P) copolymers.

THEORY

A modified Flory's equation (1), on the melting point depression of non-isomorphic binary random copolymers depending on the increase of minor component, is derived by considering the heat h_x and entropy s_x of transition due to quasi-crystals, for example, with short range ordered parts in the amorphous regions on the basis of the melting theory of copolymers by Flory⁴.

$$\frac{1}{T_m} - \frac{1}{T_m^0} = -\frac{aR}{h_u} \ln X_A \tag{1}$$

with

$$a \approx \frac{2h_u}{2h_u - h_x}$$

where T_m is the melting temperature of a copolymer, T_m^0 the melting temperature of a major component polymer, h_u the heat of fusion per molar structural unit of major component, X_A the mol fraction of major component units and R the gas constant.

Melting point depression of atactic polypropylene

The composition dependence of T_m is investigated for RIS models of a-PP generated using random numbers. Fortunately a modified Flory's equation (1) is available for a-PP, because a-PP can be treated as a binary random copolymer composed of meso and racemi diads⁷. Figure 1 shows the relation between T_m and X_A for two RIS models

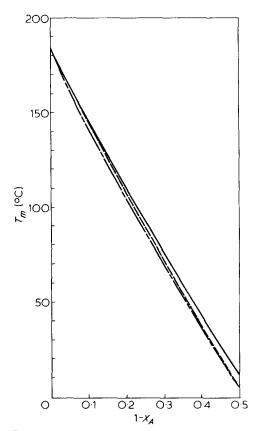


Figure 1 Relation between T_m and $1 - X_A$ for a-PP (---), 3 states model, $\eta = 0.5$; (---), 3 states model, $\eta = 0.05$; (----), 5 states model

Table 1 The values of a, h_X , s_X and h_X/s_X for RIS models of a-PP

Number of rotational isomeric states	h_X (cal mol $^{-1}$)	$s_{\mathcal{X}}$ (cal mol $^{-1}$ K $^{-1}$)	h _X /s _X (°C)	а
5	1812.6	4.05	174.3	1.91
$3(\eta = 0.5 \text{ at } 25^{\circ} \text{ C})$	1712.1	3.83	173.9	1.82
$3(\eta = 0.05 \text{ at } 25^{\circ}\text{ C})$		4.00	174.3	1.89

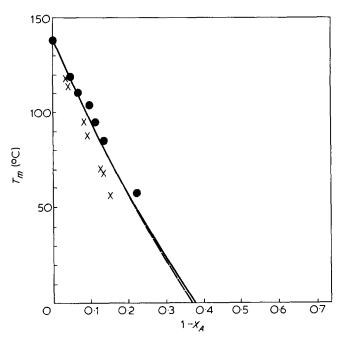


Figure 2 Relation between T_m and $1 - X_A$ for E/P copolymer -), $\eta = 0.5$, (---), $\eta = 0.05$; (\bullet), E/VA_c copolymer¹⁰, (X), n-propyl branched copolymer of PE¹¹

with three and five states of a-PP (major component is meso diad unit and the degree of polymerization x = 100). For an RIS model with three states, the two values of the 1st order interaction parameter η , expressing the statistical weight of gauche relative to the gauche state 0.05 and 0.5 at 25°C, were used⁶. Pavan's results³ are plotted in the vicinity of T_m vs. X_A curves for models of a-PP. In Table 1, the values of a, h_x , s_x and h_x/s_x for these models are listed. For any model of a-PP, the values of h_x and s_x are a little smaller than $h_{\nu}(1900 \text{ cal mol}^{-1})^8$ and $s_{\nu}(4.2 \text{ cal mol}^{-1})^8$ $(K^{-1})^8$ for isotactic PP(i-PP) and the values of h_x/s_x are by 10 K smaller than $T_m(184^{\circ}\text{C})^8$ of i-PP. The values of a are in the range of $1.8 \sim 2.0$. The high values of h_x and s_x for these models may be related to the high possibility of the presence of the ordered regions with the short helical structure in the amorphous regions9.

Table 2 The values of a, h_X , s_X and h_X/s_X for PE copolymers

Copolymer	<i>h_X</i> (cal mol ^{−1})	s_X (cal mol $^{-1}$ K $^{-1}$)	h _X /s _X (°C)	a
Model of E/P				
copolymer	454.4	1.11	136.5	1.31
E/VA _C copolymer n-propyl branched copolymer of	228.4	0.56	135.5	1.14
PE	787.9	1.92	136.9	1.70

Melting point depression of ethylene-propylene copolymer

For random E/P copolymer, the mol fraction X_A of major component units (ethylene units) should be given by 1-2n/N, where n is the total number of skeletal carbon atoms with a hydrogen atom and another substitution residue ($-CH_3$), and N the total number of bonds. Figure 2 shows the relation between T_m and X_A for an RIS model of random E/P copolymer with x = 100. The experimental data of T_m for ethylene-(vinyl acetate) (E/VA_c) copolymer¹⁰ and alkyl branched copolymer of PE¹¹ lie in the vicinity of the calculated curves for an RIS model of random E/P copolymer. In Table 2, the values of a, h_x , s_x and h_x/s_x for E/VA_c copolymer, n-propyl branched copolymer of PE and a model of E/P copolymer are listed. For E/VA_c copolymer and n-propyl branched copolymer of PE, the melting point data by Nielsen¹⁰ and Richardson¹¹ were used. In these copolymers, the values of a are smaller than 2. The values of h_x and s_x are smaller than h_u (960 cal mol⁻¹)⁵ and s_u (2.34 cal mol⁻¹ K⁻¹)⁵ of PE. For an RIS model of E/P copolymer, these values are 0.47 times as much as h_u and s_u of PE respectively. The value of h_x/s_x for each copolymer is almost equal to $T_m(137.5^{\circ}\text{C})^{5^{\circ}}$ of PE. These results suggest that there is a much looser packing in E/P and E/VA_c copolymer.

REFERENCES

- Natta, G. J. Polym. Sci. 1959, 34, 531
- Newman, S. J. Polym. Sci. 1960, 47, 111
- Pavan, A., Provasoli, A., Moraglio, G. and Zambelli, A. Macromol. Chem. 1977, 178, 1099
- Flory, P. J. J. Chem. Phys. 1949, 17, 223
- Mandelkern, L. 'Crystallization of Polymers', McGraw-Hill,
- Flory, P. J. 'Statistical Mechanics of Chain Molecules', John 6 Wiley and Sons, Inc., New York, 1969
- Tanaka, N. Polymer 1980, 21, 645
- Danusso, F. and Gianotti, G. Europ. Polym. J. 1968, 4, 165
- Corradini, P. J. Polym. Sci., Polym. Symp. 1975, 50, 327
- 10 Nielsen, L. E. J. Polym. Sci. 1960, 42, 357
- Richardson, M. J. and Flory, P. J. Polymer 1963, 4, 221